8 research outputs found

    A POSTERIORI ANALYSIS OF AN ITERATIVE ALGORITHM FOR NAVIER-STOKES PROBLEM

    Get PDF
    This work deals with a posteriori error estimates for the Navier-Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators

    A posteriori analyses of iterative algorithm for nonlinear problems.

    No full text
    La résolution numérique de n’importe quelle discrétisation d’équations aux dérivées partielles non linéaires requiert le plus souvent un algorithme itératif. En général, la discrétisation des équations aux dérivées partielles donne lieu à des systèmes de grandes dimensions. Comme la résolution des grands systèmes est très coûteuse en terme de temps de calcul, une question importante se pose: afin d’obtenir une solution approchée de bonne qualité, quand est-ce qu’il faut arrêter l’itération afin d’éviter les itérations inutiles ? L’objectif de cette thèse est alors d’appliquer, à différentes équations, une méthode qui nous permet de diminuer le nombre d’itérations de la résolution des systèmes en gardant toujours une bonne précision de la méthode numérique. En d’autres termes, notre but est d’appliquer une nouvelle méthode qui fournira un gain remarquable en terme de temps de calcul. Tout d’abord, nous appliquons cette méthode pour un problème non linéaire modèle. Nous effectuons l’analyse a priori et a posteriori de la discrétisation par éléments finis de ce problème et nous proposons par la suite deux algorithmes de résolution itérative correspondants. Nous calculons les estimations d’erreur a posteriori de nos algorithmes itératifs proposés et nous présentons ensuite quelques résultats d’expérience numériques afin de comparer ces deux algorithmes. Nous appliquerons de même cette approche pour les équations de Navier-Stokes. Nous proposons un schéma itératif et nous étudions la convergence et l’analyse a priori et a posteriori correspondantes. Finalement, nous présentons des simulations numériques montrant l’efficacité de notre méthode.The numerical resolution of any discretization of nonlinear PDEs most often requires an iterative algorithm. In general, the discretization of partial differential equations leads to large systems. As the resolution of large systems is very costly in terms of computation time, an important question arises. To obtain an approximate solution of good quality, when is it necessary to stop the iteration in order to avoid unnecessary iterations? A posteriori error indicators have been studied in recent years owing to their remarkable capacity to enhance both speed and accuracy in computing. This thesis deals with a posteriori error estimation for the finite element discretization of nonlinear problems. Our purpose is to apply a new method that allows us to reduce the number of iterations of the resolution system while keeping a good accuracy of the numerical method. In other words, our goal is to apply a new method that provides a remarkable gain in computation time. For a given nonlinear equation we propose a finite element discretization relying on the Galerkin method. We solve the discrete problem using two iterative methods involving some kind of linearization. For each of them, there are actually two sources of error, namely discretization and linearization. Balancing these two errors can be very important, since it avoids performing an excessive number of iterations. Our results lead to the construction of computable upper indicators for the full error. Similarly, we apply this approach to the Navier-Stokes equations. Several numerical tests are provided to evaluate the efficiency of our indicators

    Analyse a posteriori d'algorithmes itératifs pour des problèmes non linéaires.

    Get PDF
    The numerical resolution of any discretization of nonlinear PDEs most often requires an iterative algorithm. In general, the discretization of partial differential equations leads to large systems. As the resolution of large systems is very costly in terms of computation time, an important question arises. To obtain an approximate solution of good quality, when is it necessary to stop the iteration in order to avoid unnecessary iterations? A posteriori error indicators have been studied in recent years owing to their remarkable capacity to enhance both speed and accuracy in computing. This thesis deals with a posteriori error estimation for the finite element discretization of nonlinear problems. Our purpose is to apply a new method that allows us to reduce the number of iterations of the resolution system while keeping a good accuracy of the numerical method. In other words, our goal is to apply a new method that provides a remarkable gain in computation time. For a given nonlinear equation we propose a finite element discretization relying on the Galerkin method. We solve the discrete problem using two iterative methods involving some kind of linearization. For each of them, there are actually two sources of error, namely discretization and linearization. Balancing these two errors can be very important, since it avoids performing an excessive number of iterations. Our results lead to the construction of computable upper indicators for the full error. Similarly, we apply this approach to the Navier-Stokes equations. Several numerical tests are provided to evaluate the efficiency of our indicators.La résolution numérique de n’importe quelle discrétisation d’équations aux dérivées partielles non linéaires requiert le plus souvent un algorithme itératif. En général, la discrétisation des équations aux dérivées partielles donne lieu à des systèmes de grandes dimensions. Comme la résolution des grands systèmes est très coûteuse en terme de temps de calcul, une question importante se pose: afin d’obtenir une solution approchée de bonne qualité, quand est-ce qu’il faut arrêter l’itération afin d’éviter les itérations inutiles ? L’objectif de cette thèse est alors d’appliquer, à différentes équations, une méthode qui nous permet de diminuer le nombre d’itérations de la résolution des systèmes en gardant toujours une bonne précision de la méthode numérique. En d’autres termes, notre but est d’appliquer une nouvelle méthode qui fournira un gain remarquable en terme de temps de calcul. Tout d’abord, nous appliquons cette méthode pour un problème non linéaire modèle. Nous effectuons l’analyse a priori et a posteriori de la discrétisation par éléments finis de ce problème et nous proposons par la suite deux algorithmes de résolution itérative correspondants. Nous calculons les estimations d’erreur a posteriori de nos algorithmes itératifs proposés et nous présentons ensuite quelques résultats d’expérience numériques afin de comparer ces deux algorithmes. Nous appliquerons de même cette approche pour les équations de Navier-Stokes. Nous proposons un schéma itératif et nous étudions la convergence et l’analyse a priori et a posteriori correspondantes. Finalement, nous présentons des simulations numériques montrant l’efficacité de notre méthode

    A posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation

    No full text
    In this paper we study the a posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation. The problem is discretized in time using the implicit Euler method and in space using the finite element method. We establish a posteriori error estimates with two types of computable error indicators, the first one linked to the space discretization and the second one to the time discretization. Finally, numerical investigations are performed and presented

    A posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation

    No full text
    In this paper we study the a posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation. The problem is discretized in time using the implicit Euler method and in space using the finite element method. We establish a posteriori error estimates with two types of computable error indicators, the first one linked to the space discretization and the second one to the time discretization. Finally, numerical investigations are performed and presented

    analysis of iterative algorithms for Navier–Stokes problem

    No full text
    This work deals with a posteriori error estimates for the Navier–Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators

    CONVERGENCE ANALYSIS OF TWO NUMERICAL SCHEMES APPLIED TO A NONLINEAR ELLIPTIC PROBLEM

    No full text
    For a given nonlinear problem discretized by standard finite elements, we propose two iterative schemes to solve the discrete problem. We prove the well-posedness of the corresponding problems and their convergence. Next, we construct error indicators and prove optimal a posteriori estimates where we treat separately the discretization and linearization errors. Some numerical experiments confirm the validity of the schemes and allow us to compare them
    corecore